NOTES

Retention data of C_3 and C_4 hydrocarbons at low temperatures

Near room temperature, gas chromatographic separation of C_4 hydrocarbons is unsatisfactory since their boiling points are too close to each other and solubilities in polar solvents are so poor that good resolution is not obtained by non-polar and polar liquid phases. Adequate separation can be obtained only by complicated column combinations¹ or by gas-solid chromatography using special adsorbents². The most difficult problem of the analysis is the separation of isobutene and butene-I. PORTER AND JOHNSON³ used *n*-heptane and *n*-octane as liquid phases for analysis of low hydrocarbons at -78°C. The retention times of the C₄ hydrocarbons, however, were very long.

In the present experiments, $15.25 \text{ wt. }\% \beta,\beta'$ -oxydipropionitrile on firebrick support was used at 0, -32, -40, -45, -50, and -57° C. Stainless steel columns (2 m in length and 6 mm I.D.) were surrounded by a glass jacket cooled with a thermostat. Ethanol was used as cooling medium. The thermal conductivity detector and the sample injector of the Willi Giede GCHF 18 gas chromatograph were at room temperature.

TABLE I

RETENTION VOLUMES OF SOME C_3 to C_4 hydrocarbons at different temperatures

Hydrocarbon	o°C	— 32°C	40°C	45°C	50°C	—57°C
Propane	9,6	22.9	28.7	37.1	44.5	56.3
Propylene	18.3	49.0	62.3	77	92	120
Isobutane	20,8	65.4	89.5	114	149	216
n-Butanc	29.8	92.7	133	172	227	337
<i>n</i> -Butene-1	46.1	169	240	305	406	609
Isobutene	47.5	191	262	328	432	622
trans-Butene-2		228	329	413	550	825
cis-Butene-2	85.5	280	404	516	681	1015
Butadiene-1,3	137.4	463	669	851	1133	1703

TABLE II

CONSTANTS FOR EQUATION (1)

Hydrocarbon	A	B
Propane	802	1.96
Propylene	848	1.84
Isobutane	1028	2.45
<i>n</i> -Butane	1110	2.63
<i>n</i> -Butene-1	1156	2.57
Isobutene	1154	2.54
trans-Butene-2	1169	2.50
cis-Butene-2	1105	2.12
Butadiene-1,3	1127	1.99

Retention volumes measured from the air peak are listed in Table I. The relationship between retention volumes (V_R) and temperature was found to follow the equation:

 $\log V_R = A/T - B$

(1)

where T is the absolute temperature of the column. Values for constants A and B are shown in Table II.

A mixture of these hydrocarbons (a C_4 cut of pyrolysis product of a Romashkino naphtha) was analysed, and $-40^{\circ}C$ appeared to be the optimum temperature

Fig. 1. Chromatogram of a mixture of hydrocarbons at -40° C. I = Air; 2 = ethane; 3 = propane; 4 = propylene; 5 = isobutane; 6 = n-butane; 7 = n-butene-1; 8 = isobutene; 9 =*trans*-butene-2; 10 =*cis*-butene-2; 11 = butadiene-1, 3.

for gas chromatographic separation. Below this temperature further improvement in the resolution was hindered by broadening of the peaks. A typical chromatogram at -40° C is shown in Fig. 1. Even butene-1 and isobutene could be detected separately.

Research Institute for Plastics Industry, Budapest (Hungary)

A. GRÖBLER T. KADA I. CZAJLIK

1 V. G. ZIZIN AND V. I. SOKOLOVA, *Khim. Tekhnol. Topliv i Masel*, 7 (1962) 27. 2 R. L. HOFFMANN, G. R. LIST AND C. E. EVANS, *Nature*, 206 (1965) 823. 3 R. S. PORTER AND J. F. JOHNSON, *Anal. Chem.*, 33 (1961) 1152.

Received September 13th, 1966

J. Chromatog., 27 (1967) 239-240

Gas chromatography of isomeric butyl halides

Studies of alkyl rearrangements occurring during the preparation of alkyl halides have necessitated the development of methods for the analysis of mixtures of isomers¹. Alkyl halides are important starting materials in many organic syntheses, *e.g.* in the Wurtz and Grignard reactions, and methods for assessing their isomeric purity are therefore important. Whilst the *n*- and *tert*.-butyl halides were readily separated on a number of stationary phases, including squalane, dinonyl phthalate, and bis (2-cyanoethyl) ether, the *sec.*- and isobutyl halides had identical retention

J. Chromalog., 27 (1967) 240-241